اثر انتظار کارآمدی و ارزش پاداش بر اعمال کنترل شناختی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای روان‌شناسی بالینی، دانشکده روانشناسی و علوم تربیتی، دانشگاه شیراز، ، ایران.

2 استاد، گروه روان‌شناسی بالینی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، ایران.

3 دانشیار، گروه علوم روان‌شناختی، دانشکده علوم پزشکی، پرستاری و سلامت، دانشگاه موناش، کلیتون، استرالیا.

چکیده

هدف: هدف پژوهش حاضر بررسی نقش مؤلفه‌های انگیزشی (انتظار کارآمدی و ارزش پاداش) و پیش‌بینی‌های رفتاری مدل ارزش مورد انتظار کنترل (EVC) در جمعیت بهنجار ایرانی بود.
روش: روش پژوهش حاضر از نوع شبه آزمایشی با طرح درون‌گروهی بود. گروه نمونه (۳۱ نفر) به روش نمونه‌گیری در دسترس انتخاب شدند. شرکت‌کنندگان در مصاحبه بالینی ساختاریافته SCID-۵-RV شرکت کردند و پرسش‌نامه‌های سلامت عمومی ۱۲ گویه‌ای (GHQ-۱۲) و آزمون کوررنگی‌ایشی‌هارا را تکمیل کردند. همچنین، آزمایه رایانه‌ای رنگ-واژه استروپ همراه با نشانه‌های پاداش را اجرا کردند.
یافته‌ها: نتایج تحلیل واریانس با اندازه‌گیری‌های مکرر نشان داد که اثرات اصلی و مستقیم کارآمدی و پاداش و همچنین اثر تعاملی کارآمدی× پاداش برای زمان واکنش در آزمایه رنگ- واژه استروپ با اندازه اثر بالا معنادار بود. همچنین یافته‌ها نشان داد که اثر مستقیم کارآمدی برای درصد پاسخ‌های صحیح در آزمایه رنگ-واژه استروپ با اندازه‌های اثر بالا معنادار بود. اما اثر اصلی پاداش و اثر تعاملی کارآمدی × پاداش برای درصد پاسخ‌های صحیح معنادار نبود.
نتیجه‌گیری: به‌طور کلی، یافته‌های پژوهش حاضر پیشنهاد می‌دهد که کارآمدی و میزان پاداش به‌طور مجزا و مشترک می‌تواند تخصیص کنترل شناختی را ارتقاء دهد. این یافته‌ها در پرتو محدودیت‌ها، پژوهش‌های پیشین و نظریه‌ها مورد بحث قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of expected efficacy and reward value in exerting cognitive control

نویسندگان [English]

  • Mostafa Toobaei 1
  • Mohammadreza Taghavi 2
  • Laura Jobson 3
1 Ph.D. in Clinical Psychology, Faculty of Education and Psychology, Shiraz University, Fars, Iran.
2 Professor, Department of Clinical Psychology, Faculty of Education and Psychology, Shiraz University, Fars, Iran.
3 Associate Professor, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.
چکیده [English]

Aim: This study investigated the role of efficacy and reward value, as described in the Expected Value of Control (EVC) model, in predicting cognitive control in a healthy Iranian sample.

Method: A within-subject quasi-experimental design was used. Thirty-one participants were selected via convenience sampling and screened using SCID-V-RV, Ishihara color test, and GHQ-12. Participants completed a Color-Word Stroop task with reward and efficacy cues.

Results: ANOVA showed significant main effects of efficacy and reward, and an interaction effect for reaction time. A significant efficacy effect was found for accuracy, but other effects for accuracy were not significant.

Conclusion: Efficacy and reward value enhance cognitive control individually and jointly. These results are discussed in light of prior research and theoretical models.

کلیدواژه‌ها [English]

  • Expected value of control
  • Motivation
  • Reward
  • Efficacy
  • Cognitive Control
Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychol Bull, 142(7), 693-728. https://doi.org/10.1037/bul0000047
Badre, D. (2025). Cognitive control. Annu. Rev. Psychol. 76:167–95.  https://doi.org/10.1146/annurev-psych-022024- 103901
Balleine, B. W., & O'Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48-69. https://doi.org/10.1038/npp.2009.131             
Bechtel, W., & Abrahamsen, A. (2005). Explanation: a mechanist alternative. Stud Hist Philos Biol Biomed Sci, 36(2), 421-441. https://doi.org/10.1016/j.shpsc.2005.03.010     
Bhandari, A., Badre, D., & Frank, M. J. (2017). Learning Cognitive Control. In T. Egner (Ed.), The Wiley Handbook of Cognitive Control (pp. 376-391). John Wiley & Sons.    
Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: charted territory and new frontiers. Cogn Sci, 38(6), 1249-1285. https://doi.org/10.1111/cogs.12126   
Brown, J. W., & Alexander, W. H. (2017). Foraging value, risk avoidance, and multiple control signals: how the anterior cingulate cortex controls value-based decision-making. Journal of Cognitive Neuroscience, 29(10), 1656-1673. https://doi.org/10.1162/jocn_a_01140         
Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., & Cohen, J. (2021). Learning to Overexert Cognitive Control in a Stroop Task. Cognitive, Affective, & Behavioral Neuroscience, 21(3), 453-471. https://doi.org/10.3758/s13415-020-00845-x    
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (Second ed.). Lawrence Erlbaum Associates. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2041144
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychological review, 97(3), 332. https://doi.org/https://doi.org/10.1037/0033-295X.97.3.332  
Cohen, D., & Kitayama, S. (Eds.). (2019). Handbook of cultural psychology (2nd ed.). The Guilford Press.
Daw, N. D., & O’Doherty, J. P. (2014). Chapter 21 - Multiple Systems for Value Learning. In P. W. Glimcher & E. Fehr (Eds.), Neuroeconomics (Second Edition) (pp. 393-410). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-416008-8.00021-8      
Dickinson, A. (1985). Actions and habits: the development of behavioural autonomy. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 308(1135), 67-78. https://doi.org/10.1098/rstb.1985.0010            
First, M. B., Williams, J. B., Karg, R. S., & Spitzer, R. L. (2015). Structured clinical interview for DSM-5—Research version (SCID-5 for DSM-5, research version; SCID-5-RV). Arlington, VA: American Psychiatric Association, 2015, 1-94. https://www.appi.org/products/structured-clinical-interview-for-dsm-5-scid-5           
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204. https://doi.org/10.1016/j.cortex.2016.04.023
Frömer, R., Lin, H., Dean Wolf, C. K., Inzlicht, M., & Shenhav, A. (2021). Expectations of reward and efficacy guide cognitive control allocation. Nat Commun, 12(1), 1030. https://doi.org/10.1038/s41467-021-21315-z       
Goldberg, D. P. (1972). The detection of psychiatric illness by questionnaire. Maudsley monograph, 21.  
Grahek, I., Shenhav, A., Musslick, S., Krebs, R. M., & Koster, E. H. (2019). Motivation and cognitive control in depression. Neuroscience & Biobehavioral Reviews, 102, 371-381. https://doi.org/10.1016/j.neubiorev.2019.04.011            
Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent medial frontal cortex: A computational model. Psychological review, 122(1), 54. https://doi.org/10.1037/a0038339       
Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both costly and valued. Trends in cognitive sciences, 22(4), 337-349. https://doi.org/10.1016/j.tics.2018.01.007
Leng X, Yee D, Ritz H, Shenhav A (2021) Dissociable influences of reward and punishment on adaptive cognitive control. PLoS Comput Biol 17(12): e1009737. https://doi.org/10.1371/journal.pcbi.1009737
Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of science, 67(1), 1-25.  https://doi.org/10.1086/392759      
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current directions in psychological science, 21(1), 8-14. https://doi.org/10.1177/0963721411429458      
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734   
Mohammadkhani, P., Forouzan, A. S., Hooshyari, Z., & Abasi, I. (2020). Psychometric Properties of Persian Version of Structured Clinical Interview for DSM-5-Research Version (SCID-5-RV): A Diagnostic Accuracy Study. Iran J Psychiatry Behav Sci, 14(2), e100930. https://doi.org/10.5812/ijpbs.100930
Nozari, M., Nejati, V., & Mirzaeyan, B. (2020). Effectiveness of Transcranial direct current stimulation on executive functions and amelioration of symptoms of individuals with Major Depression Disorder. Quarterly of Applied Psychology, 13(4): 577-599. https://doi.org/10.29252/apsy.13.4.577
Padmala, S., Sambuco, N., & Pessoa, L. (2019). Interactions between reward motivation and emotional processing. Progress in Brain Research, 247, 1-21. https://doi.org/10.1016/bs.pbr.2019.03.023
Padmala, S., Sirbu, M., & Pessoa, L. (2017). Potential reward reduces the adverse impact of negative distractor stimuli. Social Cognitive and Affective Neuroscience, 12(9), 1402-1413. https://doi.org/10.1093/scan/nsx067
Parro, C., Dixon, M. L., & Christoff, K. (2018). The neural basis of motivational influences on cognitive control. Human Brain Mapping, 39(12), 5097-5111. https://doi.org/10.1002/hbm. 24348
Pornpattananangkul, N., Hariri, A. R., Harada, T., Mano, Y., Komeda, H., Parrish, T. B., Sadato, N., Iidaka, T., & Chiao, J. Y. (2016). Cultural influences on neural basis of inhibitory control. NeuroImage139, 114–126. https://doi.org/10.1016/j.neuroimage.2016.05.061
Posner, M., & Snyder, C. (1975). Attention and cognitive control In RL Solso,(Ed), Information processing and cognition (pp 55-85) Hillsdale. In: NJ Erlbaum. https://www.scirp.org/reference/referencespapers?referenceid=1567793
Ritz, H., Leng, X., Shenhav, A. (2022). Cognitive Control as a Multivariate Optimization Problem. J Cogn Neurosci, 34 (4): 569–591. https://doi.org/10.1162/jocn_a_01822
Ryan, R.M. (1995), Psychological Needs and the Facilitation of Integrative Processes. Journal of Personality, 63: 397-427. https://doi.org/10.1111/j.1467-6494.1995.tb00501.x
Ryan RM, Deci EL. 2017. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness. New York: Guilford
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217-240. https://doi.org/10.1016/j.neuron.2013.07.007  
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology, 18(6), 643. https://doi.org/10.1037/h0054651         
Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA (Vol. 724). Belmont, CA: Thomson/Brooks/Cole.
Toobaei, M., Taghavi, M., Goodarzi, M. A., Sarafraz, M., & Jobson, L. (2023). Exploring expected reward and efficacy in enhancing cognitive control in patients with depression. Journal of Clinical and Experimental Neuropsychology, 45(6), 636-646. https://doi.org/10.1080/13803395.2023.2287782        
Verguts, T. (2017). Computational models of cognitive control. In The Wiley Handbook of Cognitive Control (pp. 127-142). Wiley. https://doi.org/10.1002/9781118920497.ch8           
Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and physical tasks: A neurocomputational model. Frontiers in Behavioral Neuroscience, 9, 57. https://doi.org/10.3389/fnbeh.2015.00057   
White, R. W. (1959). Motivation reconsidered: The concept of competence. Psychological Review, 66(5), 297–333. https://doi.org/10.1037/h0040934
Wood, W., & Rünger, D. (2016). Psychology of habit. Annual review of psychology, 67, 289-314. https://doi.org/10.1146/annurev-psych-122414-033417  
Yaghubi, H., Karimi, M., Omidi, A., Barooti, A., & & Abedi, M. (2012). Validity and factor structure of the General Health Questionnaire (GHQ-12) in university students. International Journal of Behavioral Sciences, 6(2), 153-160.(persian) http://www.behavsci.ir/article_67775_e14312d9dc8228a0df4c32fd2ff77ad9.pdf
Yee, D. M., Leng, X., Shenhav, A., & Braver, T. S. (2022). Aversive motivation and cognitive control. Neuroscience and biobehavioral reviews133, 104493. https://doi.org/10.1016/j.neubiorev.2021.12.016