Comparison of the Behavioral Performance of Individuals with Social Dominance (High and Low) Under Conditions of Learning from Positive and Negative Feedback

Document Type : Original Article

Authors

1 Ph.D. Student, Department of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran.

2 Associate Professor, Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran.

3 Assistant Professor, Department of Machine Intelligence and Robotics, Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.

4 Professor, Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran.

10.48308/apsy.2024.236180.1672

Abstract

Aim: Social hierarchy guides behavior in many species, including humans, and its formation depends on cognition, social memory, and reinforcement learning processes. The ability to learn from feedback is a crucial prerequisite for successful interaction with social environments. Differences in social dominance can significantly impact various aspects of cognition and behavior. Aim of the present study was conducted to compare the behavioral performance of individuals with high and low social dominance in learning from positive and negative feedback.
Method: The statistical population of the present study consisted of 24,000 students from the University of Tabriz in 2022. The initial sample included 186 individuals who completed the State-Trait Anxiety Inventory and the dominance subscale of the Jackson Personality Inventory online. Then, 34 individuals were purposively selected with 19 individuals in the high social dominance group and 15 in the low social dominance group. A probabilistic learning task was individually administered to both groups. Behavioral data were analyzed using mixed ANOVA for statistical analysis.
Results: No significant difference was observed between the high and low social dominance groups in terms of reaction time and response accuracy when learning from positive and negative feedback (p > 0.05). However, the mean of response accuracy in both groups was higher (p < 0.05) in negative feedback compared to positive feedback.
Conclusion: The findings of the study indicate that negative feedback in both the high social dominance group and the low social dominance group motivates greater response accuracy.

Keywords

Main Subjects


Amaral, I. M., Alex Hofer, A., and El Rawas, R. (2021). Is It Possible to Shift from Down to Top Rank? A Focus on the Mesolimbic Dopaminergic System and Cocaine Abuse. Biomedicines, 9, 877. [Link]
Anderson, C., & Kilduff, G. J. (2009a). The pursuit of status in social groups. current Directions in Psychological Science,18, 295–298. [Link]
Azevedo, R. (1995). Assessing the effects of feedback in computerā€assisted learning. British Journal of Educational Technology, 26(1), 57–58. [Link]
Balconi, M., & Pagani, S. (2015). Social hierarchies and emotions: Cortical prefrontal activity, facial feedback (EMG), and cognitive performance in a dynamic interaction. Social Neuroscience, 10(2), 166–178. [Link] 
Bandura, A. (1977). Social learning theory. Prentice Hall. [Link]
Bartra, O., McGuire, JT., and Kable, JW. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412–27(2013). [Link
Bateman, T.S., Crant, J.M. (1993). The proactive component of orga- nizational behavior: A measure and correlates. J Organ Behav, 14, 103–118. [Link
Battivelli, D., Vernochet, C., Nguyen, C., Bhattacharya, S., Zayed, A., Meirsman, A.C., Messaoudene, S., Fieggen, A., Tassin, J.P., Marti, F., et al. (2019). Social status influences normal and pathological behaviors in mice, a role for dopamine and stress signaling. bioRxiv, 856781. [CrossRef]. [Link]
Bernstein, IS. (1981). Dominant: the baby and the bathwater. Behav Brain Sci,4, 419e57. [Link
Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., and Nieuwenhuis, S. (2010). The neural basis of the speedand–accuracy tradeoff. Trends Neurosci. 33, 10–16. [Link]   
Boksem, M. A., Kostermans, E., Milivojevic, B., & De Cremer, D. (2012). Social status determines how we monitor and evaluate our performance. Social cognitive and affective neuroscience, 7(3), 304-313. [Link
Buss, D. M., & Craik, K. H. (1980). The frequency concept of disposition: dominant and prototypically dominant acts 1. Journal of Personality, 48(3), 379-392. [Link
Cook, J. L., Den Ouden, H. E. M., Heyes, C. M., & Cools, R. (2014). The social dominant paradox. current Biology, 24, 2812–2816.  [Link]
Collins, A.G.E., Frank, M.J. (2018). Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proc. Natl. Acad. Sci. U. S. A, 115 (10), 2502–2507. [Link
Doll, B. B., Jacobs, W. J., Sanfey, A. G., & Frank, M. J. (2009). Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Research, 1299, 74–94. [Link]   
Eisenegger, C., Haushofer, J., and Fehr, E. (2011). The role of testosterone in social interaction. Trends Cogn. Sci. 15, 263–271. [Link]
Ellyson, S. L., and Dovidio, J. F. (1985). “Power, dominant, and nonverbal behavior: basic concepts and issues,” in Power, Dominant, and Nonverbal Behavior, eds S. L. Ellyson and J. F. Dovidio (New York, NY: Springer-Verlag), 1–27. [Link]
Epstein, M. L., Lazarus, A. D., Calvano, T. B., Matthews, K. A., Hendel, R. A., Epstein, B. B., & Brosvic, G. M. (2002). Immediate feedback assessment technique promotes learning and corrects inaccurate first responses. The Psychological Record, 52, 187-201. [Link]
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36 (3), 299–312. [Link]
Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A. & Tye, K. M. (2016). Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 321, 197–209. [Link]
Ferguson, N. (1977). Simultaneous speech, interruptions, and dominance. British Journal of Social and Clinical Psychology, 16 (4), 295–302. [Link]
Frank, M. J., Seeberger, L. C., and O’reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943. [Link]
Gottsdanker, R. (2008). Reaction time. In International Encyclopedia of the Social Sciences. Retrieved from Encyclopedia.com[Link]
Gramer, M., & Berner, M. (2005). Effects of trait dominance on psychological and cardiovascular responses to social influence attempts: the role of gender and partner dominance. 55, 279–289. [Link
Greene, J., Cohen, D., Siskowski, C., & Toyinbo, P. (2017). The relationship between family caregiving and the mental health of emerging young adult caregivers. The Journal of Behavioral Health Services & Research, 44(4), 551-5663 [Link]   
Guinote, A. (2017). How Power Affects People: Activating, Wanting, and Goal Seeking. Annurev-psych, 3(68), 353-381. [Link]
Hall, J. A., Coats, E. J., & LeBeau, L. S. (2005). Nonverbal behavior and the vertical dimension of social relations. Psychological Bulletin, 131, 898–924. [Link
Hamid, AA., Pettibone, JR., Mabrouk, OS., Hetrick, VL., Schmidt, R., Vander Weele, CM., Kennedy, RT., Aragona, BJ., and Berke, JD. (2016). Mesolimbic dopamine signals the value of work. Nat Neurosci, 19, 117–26. [Link
Hart, T., Dijkers, M. P., Whyte, J., Turkstra, L. S., Zanca, J. M., Packel, A., Van Stan, J. H., Ferraro, M., & Chen, C. (2019). A theory-driven system for the specification of rehabilitation treatments. Archives of Physical Medicine and Rehabilitation, 100, 172–180. [Link
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77 (1), 81–112. [Link
Holroyd, C.B., Coles, M.G.H. (2002). The neural basis of human error processing: re- inforcement learning, dopamine, and the error-related negativity. Psychol. Res, 109 (4), 679–709. [Link
Hornak, J., O’doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R. & Polkey, C. E. (2004). Rewardrelated reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci, 16, 463–478. [Link]
Jackson, D. N. (1974). Personality Research Form manual. Goshen, NY: Research Psychologists Press. [Link]
Johnson, S.L., Leedom, L.J., and Muhtadie, L. (2012). The dominant behavioral system and psychopathology: evidence from self-report, observational, and biological studies. Psychol Bull, 138, 692–743. [Link]
Keltner, D., Gruenfeld, D. H., and Anderson, C. (2003). Power, approach, and inhibition. Psychol. Rev, 110, 265–284.  [Link
Knight, E. L., Mehta, P. H. (2017). Hierarchy stability moderates the effect of status on stress and performance in humans. PNAS, 114 (1), 78-83. [Link]  .
Kobza, S., Ferrea, S., Schnitzler, A., Pollok, B., Südmeyer, M., & Bellebaum, C. (2012). Dissociation between active and obser-vational learning from positive and negative feedback in Par-kinsonism. PLoS ONE, 7, e50250. [Link] 
Kosinski, R. J. (2013). A literature review on reaction time. Unpublished manuscript. Retrieved from [Link]   
Koski, J. E., Xie, H., & Olson, I. R. (2015). Understanding social hierarchies: The neural and psychological foundations of status perception. Social Neuroscience, 10(5), 527–550. [Link
Kumar, S., Hultman, R., Hughes, D., Michel, N., Katz, B. M. & Dzirasa, K. (2014). Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat. Commun. 5, 4537. [Link]
Lee, SW., Shimojo, S., O’Doherty, JP. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81, 687e99. [Link]
Levy, D. R., Tamir, T., Kaufman, M., Parabucki, A., Weissbrod, A., Schneidman, E. & Yizhar, O. (2019). Dynamics of social representation in the mouse prefrontal cortex. Nat. Neurosci, 22, 2013–2022. [Link]
Lou, B., Hsu, W.Y., Sajda, P. (2015). Perceptual salience and reward both influence feedback related neural activity arising from choice. J. Neurosci, 35 (38), 13064–13075. [Link
Luque, D., Moris, J., Rushby, J.A., Le Pelley, M.E., 2015. Goal-directed EEG activity evoked by discriminative stimuli in reinforcement learning. Psychophysiology, 52 (2), 238–248. [Link]   
Ly, M., Haynes, M. R., Barter, J. W., Weinberger, D. R., & Zink, C. F. (2011). Subjective socioeconomic status predicts human ventral striatal responses to social status information. Current Biology, 21 (9), 794-797. [Link]
Mague, S. D., Talbot, A., Blount, C., Duffney, L. J., Walder-Christensen, K. K., Adamson, E., Bey, A. L., Ndubuizu, N., Thomas, G., Hughes, D. N., Sinha, S., Fink, A. M., Gallagher, N. M., Fisher, R. L., Jiang, Y., Carlson, D. E. & Dzirasa, K. (2020). Brain-wide electrical dynamics encode an appetitive socioemotional state. bioRxiv, [Link]
Maner, J. K, Case, C. R. (2016). Dominant and Prestige: Dual Strategies for Navigating Social Hierarchies. Advances in Experimental Social Psychology, 54, 229- 180. [Link]
Mattan, B. D., Kubota, J. T., & Cloutier, J. (2017). How Social Status Shapes Person Perception and Evaluation: A Social Neuroscience Perspective. Perspectives on Psychological Science, 12(3), 468–507. [Link] 
McCall, C., and Singer, T. (2012). The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat. Neurosci. 15, 681–688. [Link
Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O., et al. (2002). Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat. Neurosci, 5, 169–174. [Link]   
Noonan, M. P., Sallet, J., Mars, R. B., Neubert, F. X., O’Reilly, J. X., Andersson, J. L., et al. (2014). A neural circuit covarying with social ierarchy in macaques. PLoS Biol. 12: e1001940. [Link
O’Reilly, RC., Frank, MJ. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328. [Link]   
Padilla-Coreano, N., Batra, K., Patarino, M., Chen, Z., Rock, R. R., Zhang, R., ... & Tye, K. M. (2022). A cortical-hypothalamic circuit decodes social rank and promotes dominance behavior. Biological Sciences, 1–14.  [Link]
Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). SAGE Publications. [Link]
Perri, R. L., Berchicci, M., Spinelli, D., & Di Russo, F. (2014). Individual differences in response speed and accuracy are associated with specific brain activities of two interacting systems. Frontiers in Behavioral Neuroscience, 8, 251. [Link] 
Sandi, C., Haller, J. (2015).  Stress and the social brain: behavioral and neurobiological mechanisms Nat. Rev. Neurosci, 16, 290–304. [Link]
Santamaría-García H, Burgaleta M, Sebastian-Galles N. (2015). Neuroanatomical Markers of Social Hierarchy Recognition in Humans: A Combined ERP/MRI Study. J Neurosci, 35, 10843–10850. [Link]
Santamaría-García H, Pannunzi M, Ayneto A, Deco G, Sebastián-Gallés N. (2014). ‘If you are ood, I get better’: the role of social hierarchy in perceptual decision-making. Soc Cogn Affect Neurosci, 9, 1489–1497. [Link]
Schiffler, B.C., Almeida, R., Granqvist, M., Bengtsson, S.L. (2016). Memory-reliant post- error slowing is associated with successful learning and fronto-occipital activity. J. Cogn. Neurosci, 28 (10), 1539–1552. [Link
Schmid Mast, M. (2002). Dominance as expressed and inferred through speaking time. Human Communication Research, 28 (3), 420–450. [Link]
Schultz, W., Dayan, P., Montague, PR. (1997). A neural substrate of prediction and reward. Science, 275:1593e9. [Link]
Sidanius, J., & Pratto, F. (2003). Social dominance theory and the dynamics of inequality: A reply to Schmitt, Branscombe, & Kappen and Wilson & Liu.
British Journal of Social Psychology, 42, 207-213. [Link]
Singer, T. (2012). The past, present and future of social neuroscience: a European perspective. Neuroimage, 61, 437–449, [Link
Smith, P. K., & Magee, J. C. (2015). The interpersonal nature of power and status. Current Opinion in Behavioral Sciences, 3, 152–156. [Link] 
Spielberger, C. D. (1989). State-Trait Anxiety Inventory: Bibliography (2nd ed.). Palo Alto, CA: Consulting Psychologists Press. [Link]
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. [Link]
Steinberg, E.E., Keiflin, R., Boivin, J.R., Witten, I.B., Deisseroth, K., and Janak, PH, A. (2013). causal link between prediction errors, dopamine neurons and learning. Nat Neurosci. [Link]   
van der Kooij, M. A., and Sandi, C. (2015). The genetics ofsocial hierarchies. Curr. Opin. Behav. Sci, 2, 52–57. [Link]
Wang, F., Kessels, H. W., Hu, H. (2014).  The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci, 37(11), 674– 682. [Link]
Watanabe, N., & Yamamoto, M. (2015). Neural mechanisms of social dominance. Frontiers in neuroscience, 9, 154. [Link]   
Wenzlaff, H., Bauer, M., Maess, B., and Heekeren, H. R. (2011). Neural character-
ization of the speed-accuracy tradeoff in a perceptual decision-making task. J.
Neurosci. 31, 1254–1266. [Link
West, R., Bailey, K., Anderson, S. (2018). Transient and sustained ERP activity related to feedback processing in the probabilistic selection task. Int. J. Psychophysiol, 126, 1–12. [Link
Wolf M, van Doorn GS, Leimar O, Weissing FJ. (2007) Life-history tradeoffs favour the evolution of animal personalities. Nature, 447, 581e4. [Link]
Yamaguchi, Y. et al. (2016). The roles of dopamine D1 receptor on the social hierarchy of rodents and non-human primates. Int. J. Neuropsychopharmacol. 20 (4), 324–335. [Link]
Yamagata, N., Ichinose, T., Aso, Y., Plac ¸ ais, P.Y., Friedrich, A.B., Sima, R.J., Preat, T., Rubin, G.M., and Tanimoto, H. (2015). Distinct dopamine neurons mediate reward signals for short- and long-term memories.Proc. Natl. Acad. Sci. USA, 112, 578–583. [Link]
Zhou, T., Zhu, H., Fan, Z., Wang, F., Chen, Y., Liang, H., Yang, Z., Zhang, L., Lin, L., Zhan, Y., et al. (2017). History of winning remodels thalamo-PFC circuit to reinforce social dominant. Science, 357(6347), 162–168. [Link]
Zitek, EM., Tiedens, LZ. (2012). The fluency of social hierarchy: The ease with which hierarchical relationships are seen, remembered, learned, and liked. Journal of Personality and Social Psychology, 102(1), 98–115. [Link