Amaral, I. M., Alex Hofer, A., and El Rawas, R. (2021). Is It Possible to Shift from Down to Top Rank? A Focus on the Mesolimbic Dopaminergic System and Cocaine Abuse. Biomedicines, 9, 877. [Link]
Anderson, C., & Kilduff, G. J. (2009a). The pursuit of status in social groups. current Directions in Psychological Science,18, 295–298. [Link]
Azevedo, R. (1995). Assessing the effects of feedback in computer‐assisted learning. British Journal of Educational Technology, 26(1), 57–58. [Link]
Balconi, M., & Pagani, S. (2015). Social hierarchies and emotions: Cortical prefrontal activity, facial feedback (EMG), and cognitive performance in a dynamic interaction. Social Neuroscience, 10(2), 166–178. [Link]
Bandura, A. (1977). Social learning theory. Prentice Hall. [Link]
Bartra, O., McGuire, JT., and Kable, JW. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412–27(2013). [Link]
Bateman, T.S., Crant, J.M. (1993). The proactive component of orga- nizational behavior: A measure and correlates. J Organ Behav, 14, 103–118. [Link]
Battivelli, D., Vernochet, C., Nguyen, C., Bhattacharya, S., Zayed, A., Meirsman, A.C., Messaoudene, S., Fieggen, A., Tassin, J.P., Marti, F., et al. (2019). Social status influences normal and pathological behaviors in mice, a role for dopamine and stress signaling. bioRxiv, 856781. [CrossRef]. [Link]
Bernstein, IS. (1981). Dominant: the baby and the bathwater. Behav Brain Sci,4, 419e57. [Link]
Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., and Nieuwenhuis, S. (2010). The neural basis of the speedand–accuracy tradeoff. Trends Neurosci. 33, 10–16. [Link]
Boksem, M. A., Kostermans, E., Milivojevic, B., & De Cremer, D. (2012). Social status determines how we monitor and evaluate our performance. Social cognitive and affective neuroscience, 7(3), 304-313. [Link]
Buss, D. M., & Craik, K. H. (1980). The frequency concept of disposition: dominant and prototypically dominant acts 1. Journal of Personality, 48(3), 379-392. [Link]
Cook, J. L., Den Ouden, H. E. M., Heyes, C. M., & Cools, R. (2014). The social dominant paradox. current Biology, 24, 2812–2816. [Link]
Collins, A.G.E., Frank, M.J. (2018). Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proc. Natl. Acad. Sci. U. S. A, 115 (10), 2502–2507. [Link]
Doll, B. B., Jacobs, W. J., Sanfey, A. G., & Frank, M. J. (2009). Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Research, 1299, 74–94. [Link]
Eisenegger, C., Haushofer, J., and Fehr, E. (2011). The role of testosterone in social interaction. Trends Cogn. Sci. 15, 263–271. [Link]
Ellyson, S. L., and Dovidio, J. F. (1985). “Power, dominant, and nonverbal behavior: basic concepts and issues,” in Power, Dominant, and Nonverbal Behavior, eds S. L. Ellyson and J. F. Dovidio (New York, NY: Springer-Verlag), 1–27. [Link]
Epstein, M. L., Lazarus, A. D., Calvano, T. B., Matthews, K. A., Hendel, R. A., Epstein, B. B., & Brosvic, G. M. (2002). Immediate feedback assessment technique promotes learning and corrects inaccurate first responses. The Psychological Record, 52, 187-201. [Link]
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36 (3), 299–312. [Link]
Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A. & Tye, K. M. (2016). Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 321, 197–209. [Link]
Ferguson, N. (1977). Simultaneous speech, interruptions, and dominance. British Journal of Social and Clinical Psychology, 16 (4), 295–302. [Link]
Frank, M. J., Seeberger, L. C., and O’reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943. [Link]
Gottsdanker, R. (2008). Reaction time. In International Encyclopedia of the Social Sciences. Retrieved from Encyclopedia.com[Link]
Gramer, M., & Berner, M. (2005). Effects of trait dominance on psychological and cardiovascular responses to social influence attempts: the role of gender and partner dominance. 55, 279–289. [Link]
Greene, J., Cohen, D., Siskowski, C., & Toyinbo, P. (2017). The relationship between family caregiving and the mental health of emerging young adult caregivers. The Journal of Behavioral Health Services & Research, 44(4), 551-5663 [Link]
Guinote, A. (2017). How Power Affects People: Activating, Wanting, and Goal Seeking. Annurev-psych, 3(68), 353-381. [Link]
Hall, J. A., Coats, E. J., & LeBeau, L. S. (2005). Nonverbal behavior and the vertical dimension of social relations. Psychological Bulletin, 131, 898–924. [Link]
Hamid, AA., Pettibone, JR., Mabrouk, OS., Hetrick, VL., Schmidt, R., Vander Weele, CM., Kennedy, RT., Aragona, BJ., and Berke, JD. (2016). Mesolimbic dopamine signals the value of work. Nat Neurosci, 19, 117–26. [Link]
Hart, T., Dijkers, M. P., Whyte, J., Turkstra, L. S., Zanca, J. M., Packel, A., Van Stan, J. H., Ferraro, M., & Chen, C. (2019). A theory-driven system for the specification of rehabilitation treatments. Archives of Physical Medicine and Rehabilitation, 100, 172–180. [Link]
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77 (1), 81–112. [Link]
Holroyd, C.B., Coles, M.G.H. (2002). The neural basis of human error processing: re- inforcement learning, dopamine, and the error-related negativity. Psychol. Res, 109 (4), 679–709. [Link]
Hornak, J., O’doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R. & Polkey, C. E. (2004). Rewardrelated reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci, 16, 463–478. [Link]
Jackson, D. N. (1974). Personality Research Form manual. Goshen, NY: Research Psychologists Press. [Link]
Johnson, S.L., Leedom, L.J., and Muhtadie, L. (2012). The dominant behavioral system and psychopathology: evidence from self-report, observational, and biological studies. Psychol Bull, 138, 692–743. [Link]
Keltner, D., Gruenfeld, D. H., and Anderson, C. (2003). Power, approach, and inhibition. Psychol. Rev, 110, 265–284. [Link]
Knight, E. L., Mehta, P. H. (2017). Hierarchy stability moderates the effect of status on stress and performance in humans. PNAS, 114 (1), 78-83. [Link] .
Kobza, S., Ferrea, S., Schnitzler, A., Pollok, B., Südmeyer, M., & Bellebaum, C. (2012). Dissociation between active and obser-vational learning from positive and negative feedback in Par-kinsonism. PLoS ONE, 7, e50250. [Link]
Kosinski, R. J. (2013). A literature review on reaction time. Unpublished manuscript. Retrieved from [Link]
Koski, J. E., Xie, H., & Olson, I. R. (2015). Understanding social hierarchies: The neural and psychological foundations of status perception. Social Neuroscience, 10(5), 527–550. [Link]
Kumar, S., Hultman, R., Hughes, D., Michel, N., Katz, B. M. & Dzirasa, K. (2014). Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat. Commun. 5, 4537. [Link]
Lee, SW., Shimojo, S., O’Doherty, JP. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81, 687e99. [Link]
Levy, D. R., Tamir, T., Kaufman, M., Parabucki, A., Weissbrod, A., Schneidman, E. & Yizhar, O. (2019). Dynamics of social representation in the mouse prefrontal cortex. Nat. Neurosci, 22, 2013–2022. [Link]
Lou, B., Hsu, W.Y., Sajda, P. (2015). Perceptual salience and reward both influence feedback related neural activity arising from choice. J. Neurosci, 35 (38), 13064–13075. [Link]
Luque, D., Moris, J., Rushby, J.A., Le Pelley, M.E., 2015. Goal-directed EEG activity evoked by discriminative stimuli in reinforcement learning. Psychophysiology, 52 (2), 238–248. [Link]
Ly, M., Haynes, M. R., Barter, J. W., Weinberger, D. R., & Zink, C. F. (2011). Subjective socioeconomic status predicts human ventral striatal responses to social status information. Current Biology, 21 (9), 794-797. [Link]
Mague, S. D., Talbot, A., Blount, C., Duffney, L. J., Walder-Christensen, K. K., Adamson, E., Bey, A. L., Ndubuizu, N., Thomas, G., Hughes, D. N., Sinha, S., Fink, A. M., Gallagher, N. M., Fisher, R. L., Jiang, Y., Carlson, D. E. & Dzirasa, K. (2020). Brain-wide electrical dynamics encode an appetitive socioemotional state. bioRxiv, [Link]
Maner, J. K, Case, C. R. (2016). Dominant and Prestige: Dual Strategies for Navigating Social Hierarchies. Advances in Experimental Social Psychology, 54, 229- 180. [Link]
Mattan, B. D., Kubota, J. T., & Cloutier, J. (2017). How Social Status Shapes Person Perception and Evaluation: A Social Neuroscience Perspective. Perspectives on Psychological Science, 12(3), 468–507. [Link]
McCall, C., and Singer, T. (2012). The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat. Neurosci. 15, 681–688. [Link]
Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O., et al. (2002). Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat. Neurosci, 5, 169–174. [Link]
Noonan, M. P., Sallet, J., Mars, R. B., Neubert, F. X., O’Reilly, J. X., Andersson, J. L., et al. (2014). A neural circuit covarying with social ierarchy in macaques. PLoS Biol. 12: e1001940. [Link]
O’Reilly, RC., Frank, MJ. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328. [Link]
Padilla-Coreano, N., Batra, K., Patarino, M., Chen, Z., Rock, R. R., Zhang, R., ... & Tye, K. M. (2022). A cortical-hypothalamic circuit decodes social rank and promotes dominance behavior. Biological Sciences, 1–14. [Link]
Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). SAGE Publications. [Link]
Perri, R. L., Berchicci, M., Spinelli, D., & Di Russo, F. (2014). Individual differences in response speed and accuracy are associated with specific brain activities of two interacting systems. Frontiers in Behavioral Neuroscience, 8, 251. [Link]
Sandi, C., Haller, J. (2015). Stress and the social brain: behavioral and neurobiological mechanisms Nat. Rev. Neurosci, 16, 290–304. [Link]
Santamaría-García H, Burgaleta M, Sebastian-Galles N. (2015). Neuroanatomical Markers of Social Hierarchy Recognition in Humans: A Combined ERP/MRI Study. J Neurosci, 35, 10843–10850. [Link]
Santamaría-García H, Pannunzi M, Ayneto A, Deco G, Sebastián-Gallés N. (2014). ‘If you are ood, I get better’: the role of social hierarchy in perceptual decision-making. Soc Cogn Affect Neurosci, 9, 1489–1497. [Link]
Schiffler, B.C., Almeida, R., Granqvist, M., Bengtsson, S.L. (2016). Memory-reliant post- error slowing is associated with successful learning and fronto-occipital activity. J. Cogn. Neurosci, 28 (10), 1539–1552. [Link]
Schmid Mast, M. (2002). Dominance as expressed and inferred through speaking time. Human Communication Research, 28 (3), 420–450. [Link]
Schultz, W., Dayan, P., Montague, PR. (1997). A neural substrate of prediction and reward. Science, 275:1593e9. [Link]
Sidanius, J., & Pratto, F. (2003). Social dominance theory and the dynamics of inequality: A reply to Schmitt, Branscombe, & Kappen and Wilson & Liu.
British Journal of Social Psychology, 42, 207-213. [Link]
Singer, T. (2012). The past, present and future of social neuroscience: a European perspective. Neuroimage, 61, 437–449, [Link]
Smith, P. K., & Magee, J. C. (2015). The interpersonal nature of power and status. Current Opinion in Behavioral Sciences, 3, 152–156. [Link]
Spielberger, C. D. (1989). State-Trait Anxiety Inventory: Bibliography (2nd ed.). Palo Alto, CA: Consulting Psychologists Press. [Link]
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. [Link]
Steinberg, E.E., Keiflin, R., Boivin, J.R., Witten, I.B., Deisseroth, K., and Janak, PH, A. (2013). causal link between prediction errors, dopamine neurons and learning. Nat Neurosci. [Link]
van der Kooij, M. A., and Sandi, C. (2015). The genetics ofsocial hierarchies. Curr. Opin. Behav. Sci, 2, 52–57. [Link]
Wang, F., Kessels, H. W., Hu, H. (2014). The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci, 37(11), 674– 682. [Link]
Watanabe, N., & Yamamoto, M. (2015). Neural mechanisms of social dominance. Frontiers in neuroscience, 9, 154. [Link]
Wenzlaff, H., Bauer, M., Maess, B., and Heekeren, H. R. (2011). Neural character-
ization of the speed-accuracy tradeoff in a perceptual decision-making task. J.
Neurosci. 31, 1254–1266. [Link]
West, R., Bailey, K., Anderson, S. (2018). Transient and sustained ERP activity related to feedback processing in the probabilistic selection task. Int. J. Psychophysiol, 126, 1–12. [Link]
Wolf M, van Doorn GS, Leimar O, Weissing FJ. (2007) Life-history tradeoffs favour the evolution of animal personalities. Nature, 447, 581e4. [Link]
Yamaguchi, Y. et al. (2016). The roles of dopamine D1 receptor on the social hierarchy of rodents and non-human primates. Int. J. Neuropsychopharmacol. 20 (4), 324–335. [Link]
Yamagata, N., Ichinose, T., Aso, Y., Plac ¸ ais, P.Y., Friedrich, A.B., Sima, R.J., Preat, T., Rubin, G.M., and Tanimoto, H. (2015). Distinct dopamine neurons mediate reward signals for short- and long-term memories.Proc. Natl. Acad. Sci. USA, 112, 578–583. [Link]
Zhou, T., Zhu, H., Fan, Z., Wang, F., Chen, Y., Liang, H., Yang, Z., Zhang, L., Lin, L., Zhan, Y., et al. (2017). History of winning remodels thalamo-PFC circuit to reinforce social dominant. Science, 357(6347), 162–168. [Link]
Zitek, EM., Tiedens, LZ. (2012). The fluency of social hierarchy: The ease with which hierarchical relationships are seen, remembered, learned, and liked. Journal of Personality and Social Psychology, 102(1), 98–115. [Link]